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Randomly Flashing Diffusion: Asymptotic Properties 
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The theory of abstract Markov operators and semigroups is applied for studying 
asymptotics of a randomly flashing diffusion process. The probability distribu- 
tion of the process is determined by a set of two partial differential equations and 
sufficient conditions for the existence of a stationary solution of the equations are 
formulated, and convergence of solutions to the stationary solution is proved. 
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1. I N T R O D U C T I O N '  

A great deal of effort has been devoted to the study of the influence of noise 
and random perturbations on systems described by differential equations of 
the Langevin type. Usually, processes driven by a single noise have been 
investigated, while composite noises, the product of several elementary 
noises, have rather seldom been considered. Multistate diffusion processes 
and multistate random walks t~l are examples of process with composite 
noises. A two-state diffusion process is considered in refs. 2 and 3. For this 
process, a Brownian motion jumps between a diffusion process of strength 
D~ and a diffusion process of strength D2. The sojourn time in each state 
is random and transitions between two states occur by means of a 
dichotomic Markovian process ~21 or Poission process. ~3~ A special case of 
the two-state process, i.e., when D 2 = 0, is analyzed in refs. 4-7. Processes 
of this kind are termed randomly flashing or interrupted diffusion because 
a system jump between diffusional (D~ 5 0 )  and deterministic ( 0 2 - - - - 0 )  

states and jumps are driven by a random process. 
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In this paper we study the asymptotic behavior of probability distribu- 
tions of the randomly flashing diffusion x, described by the following 
stochastic equation (with the Stratonovich interpretationCS~): 

d 
.,~,=f(xt)+g(x,)F(t), s (1.1) 

where f (x)  and g(x) are deterministic functions, and F(t) is a composite 
stochastic process of the form 

F(t)=~(t)rl(t) (1.2) 

The process q(t) is a Gaussian white noise with the first two moments 

(q( t ) )  =0,  (ll(t) rl(s)) = 2 ~ ( t - s )  (1.3) 

and ~(t) is a two-state { 1, 0} Markov process with transition probabilities 
1 ~ 0 and 0 ~  1 in small time dt equal to adt and b dt, a, b > 0 ,  respec- 
tively. Initial probabilities for ~(t) are chosen arbitrarily. We assume that 
q(t) and ((t) are independent stochastic processes and the initial value Xo 
is independent of F(t). Notice that the noise F(t) is a Dirac delta- 
correlated (or uncorrelated) process as in (1.3), but generally with the time- 
dependent intensity D(t) = 2(~2(t) ). 

The noise F(t) in (1.1) might be interpreted as a Langevin force 
switched on and off at random time instants with Poisson statistics. If t is 
interpreted as a spatial variable, then F(t) can model a stochastic two-layer 
medium: one layer is a medium with a diffusion coefficient D t = 1, ~4"91 and 
the other is the vacuum (surroundings characterized by a diffusion coef- 
ficient D2 = 0). Equation (1.1) is an example of two-state models in which 
transitions from one state [deterministic: .~ ,=f (x , ) ]  to the other state 
[diffusional: ?i',=f(x~)+g(x,)rl(t)] and vice versa occur at random 
moments. Models of this type are considered in ref. 10. As possible applica- 
tions of equations like (1.1) one could mention the problem of multiple 
scattering of particles through plates of matter separated by vacuum 
gaps, t41 transport phenomena in sponge-type strutures with empty places 
(vacua) and matter randomly distributed in space, and wave propagation 
in randomly stratified m e d i a / ~  Moreover, models of randomly flashing 
diffusion might find an application in domains where information is trans- 
coded along tottery transmission lines, e.g., in radiophysics, or in faulty 
neuron networks. Additionally, flashing diffusion models might also find 
applications for control of chaos ~2~ or phase controlJ ~3~ 

A closed form of an evolution equation for a one-dimensional prob- 
ability density p(x, t) of the process (1.1) is derived in ref. 5. It is rather a 
complicated partial integrodifferential equation. For a linear noise-additive 
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case, when f (x)  = -ax ,  a > 0, and g(x) = 1, this equation is solved in ref. 6 
and analyzed in detail in ref. 7. The first-passage-time problem for the 
linear model is studied in ref. 14, where it is shown that boundary and 
natural conditions for integration of differential equations determining the 
mean first passage time depend strongly on the domain which the process 
x, is to exit. A simplified case, when f ( x ) = 0  and g ( x ) =  1, is investigated 
in ref. 4. In this paper, we consider in general nonlinear processes defined by 
(1.1) with arbitrary functions f(x) and g(x). 

A pair (x,, ~(t)) constitutes a Markov process on R • { 1, 0}. Equations 
for probability distributions p~(x, t) and p0(x, t) of this process [having 
values (x, 1) and (x, 0), respectively] are of the form c~5" ~6~ 

ap, o +s163 ) 
- ~ =  -ap '  +bP~ (fP~) Ox \ Ox (gp') 

Opo 8 
~ - =  ap, - bpo --~x ( f  Po) 

(1.4) 

The probability distribution p(x, t) of the process x, alone is given by 
p(x, t)= pl(x, t)+ po(X, t). 

The purpose of this paper is to give sufficient conditions for the exist- 
ence of stationary states of the process (1.1), a stationary solution of the 
system (1.4), and convergence of solutions to the stationary solution. Such 
a property of the system (1.4) is called asymptotic stability and it fully 
describes the behavior of the system as t ~ co. It is formulated as a 
theorem in Section 2. The main idea of the paper is to apply the theory of 
abstract Markov operators and semigroups to study the system (1.4). This 
approach to the study of the asymptotic statibility has been recently 
applied to such diverse areas as diffusion processes, astrophysics, queuing 
theory, and population dynamics/~7--'~ First, using the Phillips perturba- 
tion theorem, ~'~ we give a formula for solutions of (1.4) in Section 3. Next, 
in Section 4, we formulate a criterion for asymptotic stability of Markov 
semigroups. Then, we show that the system (1.4) is asymptotically stable if 
and only if it has a stationary solution. Finally, we prove the existence of 
the stationary solution (Section 5). Final remarks are given in Section 6. 

2. M A I N  RESULT 

Throughout the paper we assume that feCZ(R), g~C'-(R), and 
g(x) ~> c > 0, where C2(R) is the space of two-times-differentiable bounded 
functions whose derivatives of order ~<2 are continuous and bounded. 
Since the solutions of the system (1.4) are probability distributions of some 
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Markov process, we assume that pl(x,t)>~O, po(x,t)>~O 
malization condition is fulfilled, 

f~- [ p l ( x , t ) + p o ( x , t ) ] d x =  1 
- - o S ,  

The main result of this paper is the following: 

T h e o r e m  1. Let 

and assume that: 

F(x) = f j ' f ( z ) d z  
g2(z) 

t.uczka and Rudnicki 

and the nor- 

f 
e . G  

lim { Ip,(x, t ) -  p*(x)l + IPo(X, t ) -  p~'(x)l } d x = 0  (2.1) 

There proof of Theorem 1 is given in Section 5. Here we only make the 
reduction to the special case g(x) = 1 a n d  a = 1. Setting 

h(x)= I xx/~ldr and ~ ( x ) -  f ( h - l ( x ) )  
Jo g(r) 

and substituting 

pl(x, t) = h'(x) fil(h(x), at), po(x, t) = h'(x) fio(h(x), at) 

(the prime denotes a derivative with respect to x), we obtain 

at - fi ' + a fi ~ - -~x ( f fi ~ ) 0 - a x---s 

afio= fit -a/~o - ~  (f#o) ( at 

(2.2) 

An easy computation shows that (ii) holds if and only if 

lim [ f ( x ) [ e x p [ -  Io"f(r) d r ] = ~  (2.3) 

(i) There exists Xo > 0 such that .xf(x) < 0 for Ix[ >~ x o. 

(ii) liml.,i~ ~ [f(x)] e -Fc ' )=  oo. 

Then there exists a stationary solution p*(x )=(p*(x ) ,p* (x ) )  of the 
system (1.4). For every solution (pl(x, t), po(X, t)) of (1.4) we have 
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Since the operator Hv(x)=h ' (x )v (h(x) )  preserves the norm in LI(R), the 
system (1.4) is asymptotically stable if and only if the system (2.2) is 
asymptotically stable. From now on we consider the system (1.4) with 
g(x)= l a n d a = l .  

3. SEMIGROUP REPRESENTATION OF SOLUTIONS 

In this section we give a formula for the solutions of the system 

I(~Pl (~ 02pl 
-~ -=  - p ,  + bpo--~--~x ( fp , )  + Ox-----T- 

Opo 0 
- -~=  P, - bpo - -~x (fPo) 

Denote by A and B the linear operators 

d d2v 
Av(x)  = - ~ (fv) + d--~Y'-' By(x) = - ~  (fv) 

a x  

(3.1) 

Operators A and B generate continuous semigroups of Markov operators 
{T*(t)},~>o and {T-(t)},>~o on the space L~(R). Formally, for any 
veL~(R)  the functions u + ( t ) = T + ( t ) v  and u ( t ) = T - ( t ) v  are the solu- 
tions of the evoluation equations u'+(t)=Au+ and u'_( t )=Bu_ with the 
initial conditions u + ( 0 ) = u _ ( 0 ) = v  (the prime denotes a derivative with 
respect to t). Now, let 2 be a constant such that 2 > max{ 1, b}. We define 
the operators d and ~- by 

~ (  Pl , Po) = ( APl , Bpo) 

~-(Pl ,  Po) = 2 -  ~((), - 1 ) p~ + bpo, p~ + (2 - b)Po) 

Then instead of the system (3.1) we can consider one evolution equation: 

p'(t) = 2 J p  -- 2p + d p  (3.2) 

where P = ( P l ,  P0). The operator d generates a semigroup {T(t)},~>o of 
operators on the space L~(R)x L~(R) given by the formula 

T(t) (p , ,  Po)=( T+(t) Pl, T - ( t )  po) 

Let X =  R x { 1, 0} and LI(X)  be the Banach space of integrable functions 
on X with the norm 

Ilvll = f Iv(x, 1)1 dx + f Iv(x, 0)1 dx 
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We can identify the spaces LI(R)x LI(R) and LI(X) by vi(x)= v(x, i) for 
i = 1, 0 and v e L I(X). Then { T(t)}, >/o is a semigroup of Markov operators 
on the space L~(X) and 5- is a Markov operator on L~(X). 

From the Phillips perturbation theorem I'-~ Eq. (3.2) with the initial 
condition p(0) = v generates a continuous semigroup { S(t) }, >/o of Markov 
operators on L~(X) given by 

S(t)v=p(t)=e-:" ~ 2"T.(t)v (3.3) 
n = O  

where To(t)= T(t) and 

T,,+l(t)v= To(t-s)•-T.(s)vds, n>.O (3.4) 

Thus, instead of studying solutions of Eq. (3.1), we study the behavior of 
the semigroup {S(t)},~o. Let D(X) denote the set of all probability 
densities on L ~(JO, i.e., 

D(X)= {ve L l(X): v >~O, ~ v(x) dx = l } 

The density (or measure) v, is called invariant under the semigroup 
{ S(t)},/> o if S(t) v, = v, for every t ~> 0. The semigroup { S(t)}, >/o is called 
asymptotically stable if it has an invariant density v, and for every 
v e D(X) 

lim IlS(t)v-v,[I =0 

Now, the condition (2.1) is equivalent to the asymptotic stability of the 
semigroup { S(t) }, >/o- 

Since in formulas (3.3) and (3.4) the essential role is played by semi- 
groups {T+(t)},~>o and {T-( t )} ,go ,  we give some auxiliary results on 
these semigroups. 

The semigroup { T+(t)},~o is an integral semigroup, i.e., for every 
t > 0 there exists a Borel measurable function k, : R x R --* R such that 

i 
,:t; 

T+(t) v(x) = k,(x, y) v(y) dy (3.5) 
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The function k,(x, y) has some additional properties: it is strictly positive 
and continuous with respect to (t, x, y) and there exists a constant m > 0 
such that 

k,(x,y)<~m(l+t -l/'-) for t > 0 ,  x~R,  y ~ R  (3.6) 

The semigroup {T-( t )} ,~o can be explicitly given. Namely, the 
function u(x, t) = T-(t)  v(x) is a solution of the equation 

with the initial condition 

Ou 0 
Ot Ox (f(x)u) (3.7) 

u(O, x) = v(x) 

Equation (3.7) can be solved by the method of characteristics. For each 
.,~eR denote by re,.'~ the solution x(t) of the equation 

x'(t) = f(x(t))  

with the initial condition x (0 )=  .g. Then 

0 
T-(t)  v(x) = u(x, t) = v(n_, x) ~ (re_,x) (3.8) 

The formula (3.8) can be written down in the following way: 

v(x)=f(v(re ,x) f(re if f ( x ) r  T-(t)  [v(x) if f ( x )  = 0  (3.9) 

4. CONDITIONS FOR ASYMPTOTIC STABILITY 

First, we formulate a criterion for the asymptotic stability of Markov 
semigroups. Let (Y, .~',p) be a cr-finite measure space. Denote by 
D = D(Y) the subset of L ' (Y) which consist of all densities. A semigroup 
{P(t)},go of linear operators on L~(Y) is called a Markov semigroup if 
P(t)(D) c D  for every t>~0. 

A Markov semigroup {P(t)},~>o is called partially integral if for t >  0 
the operator P(t) can be written in the form 

P( t) v(x)= fyq,(x, y) v(y) lt(dy) + R( t) v(x) 
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where R(t) is a nonegative operator on L~(Y) and q,(x, y) is a measurable 
nonnegative function such that 

I q,(x, y) p(dy) > 0 for x e Y 
Y 

As in Section 3, a density v. is called invariant if P(t)v. = v, for every 
t~>0. The semigroup {P(t)},~>0 is asymptotically stable if it has an 
invariant density v, and lim~ . . . .  [I P(t) v - v, IJ = 0 for every v. The support 
of a v e LI(Y) is defined up to a set of measure zero by the formula 

supp v = {x e Y: v(x) v~ 0} 

Proposition 1. Assume that the partially integral semigroup 
{P(t)},>/0 has an invariant density. If there exists t > 0 such that for every 
v ~ D(Y) we have 

supp P(t)v= Y (4.1) 

then the semigroup { P(t)},/> o is asymptotically stable. 

Proposition 1 is a simple consequence of the Theorem 1 in ref. 22. We 
only check that the semigroup {S(t)},>_.o generated by the system (3.1) 
satisfies the assumptions of Proposition 1. Since the semigroup { T + (t)}, >/o 
is an integral semigroup with a strictly positive kernel k,(x, y), from (3.4) 
it follows immediately that the semigroup { S(t)} ,/>0 is partially integral. 
We check that the semigroup {S(t)},~o satisfies the condition (4.1). 
Indeed, let u~LI(R) be such that u~>0 and ju(x) dx>O. Then, since 
{ T+(t)}, >/o is an integral semigroup with a strictly positive kernel, we have 
supp T+(t)u = R. Moreover, from (3.8) it follows that if supp u = R, then 
supp T-( t )u=R.  Now, let v~D(X). Then from the above observations 
and from (3.4) it follows that supp Tz(t)v=X for t > 0 .  This implies that 
supp S(t)v = X for t > 0 and v ~ D. 

Now, let v, be an invariant density with respect to semigroup 
{S(t)},~>o. Then the function p(x)= (pl(x), po(x)), where pl(x)= v.(x, 1) 
and po(x)= v.(x, 0), is a stationary solution of the system (3.1). By use of 
operators A and B we write (3.1) in the following way: 

b p o = ( I - A ) p ,  
Pl (bI -B)po (4.2) 

Let R(2, A) and R(2, B) be the resolvents of the operators A and B, respec- 
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tively. Put R(A)= R( 1, A) and R(B)= bR(b, B). Then (4.2) is equivalent to 
the system 

Pl =bR(A)po (4.3) 
bpo = R( B ) p 

It is easy to check that R(A) and R(B) are Markov operators on the space 
L1(R). 

Let P =  R(A) R(B). Then P is also a Markov operator on LI(R). If the 
operator P has an invariant density v ~ L~(R), then the functions 

b 1 
Pl = ~ v ,  P ~  1 R(B)v 

are solutions of (4.3). 
In order to prove the Theorem 1, it remains to check that conditions 

(i) and (ii) imply the existence of an invariant density with respect to P. 
This will be done in the next section. 

5. P R O O F  OF T H E O R E M  1 

In the proof of Theorem 1 we use some auxiliary results concerning 
the operators R(A), R(B), and P. 

The operator R(A) is given by the formula 

R(A) v(x)= e-'T+(t) v(x) dt 

From (3.5) and (3.6) it follows that R(A) is an integral operator with a 
kernel 

k(x, y) = e-'kt(x, y) dt 

f? ~ m  e - ' ( l + t - m )  d t=( l+v /~ )m  

Let M =  (1 + x /~)m and denote by D the subset of all densities in L~(R). 
Then 

R(A ) v(x) <~ M (5.1) 

for every v E D, x e R. 
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Since the function k,(x,y) is strictly positive and cont inuous  with 
respect to (t, x, y), the kernel k(x, y) has  the following proper ty .  Fo r  every 
Y~ <3'2 and x ~ R  there exists e > 0  such that  

k(x,y)>>.e for Ye[Yl ,Y2]  (5.2) 

The  opera to r  R(B) can be given by an explicit formula.  Since 

R(B) v(x) = be-b'r-(t) v(x) dt (5.3) 

the condit ion (3.9) implies R(B) v(x)--v(x) if f ( x ) = 0  and 

f ' -  be_b, v(g _,x) f (~  _,x) dt R(B) o(x) (5.4) 
Oo f ( x )  

if f ( x )  # 0. Let re _ ~ x = lim, ~ .~ re _, x. Then  subst i tut ing y = n _, x in (5.4), 
we obtain  

b ." .,'bdz 
R(B) v(x)=f--(---x)x) f~_,..,.exp (I,. T(--z)) V(y, dy (5.5) 

Now,  let v: R ~ R be a nonnegat ive  measurab le  function. Assume that  
s u p p v c [ x l , x 2 ]  and let y , = m i n { x l , r c _ ~ x l } ,  y 2 = m a x { x 2 ,  rc_lx2}. 
Then supp T - ( t ) v c  [yj ,y,_-I  for t e  [0, 1]. F r o m  (5.3) it follows that  

b e  - b t  " - " R(B) v(x) dx>~ T-(t)  v(x) dxdt 
) . "1 

fo = I be -b' dt v(x) dx 

= ( 1  - e  -b) dx 

In part icular ,  if ~-' v(x) dx = ~ ,  then S",;? R(B) v(x) dx = ~ .  F r o m  (5.2) it 
follows that  if v is a nonnegat ive  function such that  S~ v(x) dx = ~ ,  then 
for every x ~ R 

Pv(x) = R(A) R(B) v(x)>~ e R(B) v(x) dy = oo (5.6) 

Moreover ,  P is an integral opera to r  and Pv(x)>O for every r e D  and 
x~R.  
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Now, we need some auxiliary definitions. A sequence of densities { v,,} 
is called sweeping if 

f 
c 

lim v,,(x) dx = 0 for every c > 0 
n ~  a o  _ r  

A Markov  operator  Q: L ~ ( R ) ~  L~(R) is called sweeping if for every v ~ D 
the sequence {Q"v} is sweeping. If Q is an integral operator,  Q has no 
invariant density and there exists a positive, locally integrable function v* 
such that Qv*<~ v*, then the operator  Q is sweeping. The prove of this 
theorem is given in ref. 23. 

The following lemma shows that the operator P = R ( A ) R ( B )  is 
sweeping or it has an invariant density. 

Lemma 1. If the operator P has no invariant density, then P is 
sweeping. 

Proof. The proof  is based on the abstract theory of Markov  pro- 
cesses (see refs. 22 and 24 for details). If  P has no invariant density, then 
it is sufficient to check that there exists a positive, locally integrable func- 
tion v* such that Pv*<~ v*. Since Pv(x)> 0 for every v ~ D and x e R, the 
operator  P is dissipative or conservative. If  P is dissipative, then for every 
v e D, v > 0 ,  we have v* x"~'- P"v < = ~,,  = o oo and Pv* <~ v*. If P is conservative, 
then P is a Harris operator  and, consequently, there exists a measurable 
function v* such that 0 < v * <  ~ and Pv*= v*. It remains to check that 
v* is locally integrable. Suppose, on the contrary, that there is a closed, 
bounded interval [ x j ,  x2] such that ~;~:~ v*(x )dx= oo. Then from (5.6) it 
follows that Pv* = c~ for every x e R, which is impossible. 

In the next three lemmas we show that the operator  P is not sweeping. 

Lemma 2. 

f 
cC 

Let 7(x) = [~; e -F~'I dt]. Then for every v e D we have 

y(x) R(A) v(x) dx<~ ),(x) v(x) d x + 2 M  (5.7) 
- -  .zr~ 

Proof. Let D O be a dense subset of D consisting of densities with 
bounded supports. Since R(A) is a Markov operator,  it is sufficient to 
check (5.7) for rEDo. Let v~Do and let u(x, t) be the solution of the 
equation Ou/Ot = ALl with u(x, O) = v(x). Then for any t > 0, c > 0, and non- 
negative integers i and j we have 

o i + J l g  

lira e" I-,-J (x, t) = 0 
I x l  ~ ~ Ot i OX ff 
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Let cp(t)= ~ y(x) u(x, t) dx. Since y(x) grows at most exponentially, the 
function cp(t) is well defined. We have 

; E 0 02u, x,,,l ~o'(t) = y(x) - ~ ( f (x)  u(x, t)) + Ox~------y-- - 

Integrating the last integral by parts, we obtain 

cp'(t) = 2u(0, t) (5.8) 

From the definition of R(A)v it follows that 

9'(x) R(A) v(x) dx = e-'cp(t) dt 
- - O r _  

=~o(o) + fO~-' e-'cp'( t) dt 

= ~o(0) + 2  f :  e-'u(O, t) dt 

= y(x) v(x) dx + 2R(A) v(0) 

<~ y(x) v(x) dx + 2M 

sequence {v,,} is sweeping, then the Lemma 3. If a sequence 
{R(B) v,,} is sweeping. 

Proof. Let Xo > 0 be a constant such that f ( x ) <  0 for x > xo and 
f ( x ) > 0  for x <  - x  o. Than for any r e D  and ~>Xo we have 

f~ R(B) v(x) dx 
- - o c  

- ~ - - ~ x  f" v ,y)exp  ~f" 'bd-~dydx  
- ~  ~ ~ f ( . - ) . _ ~  [ .,- f ( z ) J  

1 

+ f~ .f-~x) f,. v(y)exp [j.,. f ( z ) J  

Changing the order of integration in the last integrals, we obtain 

R(B) v(x)dx= v(y) dy+ v(y)f l(y)dy (5.9) 
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where 

for fl(y) = exp .... . / (z )J  

~;ybd:'~ for y > ~  
fl(y) = e x p  [ = f ( z ) J  

fl(),) = 0 for y e  [ - e , ~ ]  

Since f (x)  is a bounded function, we have liml.,,M_ ~ fl(y)=O. This and 
(5.9) imply that if {v.} is sweeping, then {R(B) v,} is sweeping. 

L e m m a  4. Let v be a density with a bounded support. Then the 
sequence {P"v} is not sweeping. 

Proof. Let w e D .  Then R(B)w=w+b-~BR(B)w. Since 

lim e-FC"~f(x) = -- CO, lim e-F~"~f(x) = CO 
, X ' ~  cC . X ' ~  - - o G  

there exist MI > 0 and a > 0 such that 

e-Ftx)f(x) sign x ~ M~ b for x e R 
(5.1o1 

e-FC'-If(x)signx<~(--4M-Mi)b for Ixl _->~ 

First, we check that 

y(x) Pw(x) dx <~ )'(x) w(x) dx - 2M 
- -  , :< . .  - -  o C  

f" + ( 4 M +  Mr)  R(B) w(x)dx (5.11) 

Since P and R(B) are Markov operators, it is sufficient to check (5.11) for 
w e D o. If  w e D o, then from (5.10) and Lemma 2. it follows that 

f~  y(x) Pw(.x) dx 

F <~ y(x) R(B) w(x) dx + 2M 

= y ( x )  w ( x )  d x  + 2 M  - b - t  y ( x )  ~ (f(x) R(B) w(x)) dx 
- - r  
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f c t  ic t5 
= y(x) w(x) dx + 2M + b - '  e -F(x ) f ( x )  sign xR(B) w(x) dx 

<~ y(x) w(x) dx + 2M + M t 

),(x) w ( x ) d x - 2 M + ( 4 M + M  l) R(B) w(x) & 
--r -- a. 

Since I~_, R(B) w(x) dx ~ 1, the inequality (5.11 ) implies 

y(x) Pw(x) dx<~ y(x) w(x) d x + 2 M + M  1 (5.12) 
-- r "zt2. 

If v is a density with a bounded support, then ~.~. ) , ( x )v (x )dx< ~ and 
from (5.12) it follows that I ~ .  y(x) P"v(x) dx< oc for any positive integer 
n. Now, we are ready to prove that { P"v} is not sweeping. Suppose, con- 
trary to our claim, that {P"v} is sweeping. Then, according to Lemma 3, 
the sequence {R(B)P"v} is sweeping. This implies that 

f~ R(B) P"v(x) <~M/(4M+MI) dx 

for sufficiently large n (say 17/> no). From (5.11) it follows that 

y(x) P"+lv(x)dx<<. ) , ( x ) P " v ( x ) d x - M  for n>~no 

This implies that 

lim y(x) P'v(x) dx = - oe 

which is impossible. 
From Lemma 4 it follows that the operator P is not sweeping and 

consequently P has an invariant density. This implies that the semigroup 
{ S(t)}, >/o is asymptotically stable, which completes the proof of Theorem 1. 

6. C O N C L U D I N G  R E M A R K S  

We have investigated the asymptotic properties of the randomly 
flashing diffusion process defined by Eq. (1.1). The main result is given by 
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Theorem 1, where conditions for the existence of the invariant measure and 
limiting states of the process are established. Let us recall that for noise- 
driven nonlinear systems, invariant measures can play an essential role in 
determining noisy bifurcations and stability properties of the system. Two 
comments on assumptions (i) and (ii) of Theorem 1 are in order. Assump- 
tion (i) is close to the assumption that the potential U(x) defined as 

;o' U(x)= - f (y)  dy 

is attracive for long distance (when Ixl is great). It is a quite natural and 
physical assumption for deterministic counterparts possessing stationary 
states. Assumption (ii) is rather technical. Nevertheless, it is close to the 
condition for the existence of stationary states for the corresponding 
(Fokker-Planck) diffusion process. 

We have proved the existence of the invariant measure and stationary 
states p*(x)= (p*(x), p*(x)) in the extended phase space R x { 1, O} of the 
process (x,, ~(t)). For the process x, alone, its probability density is 
p(x, t)= p~(x, t)+po(x, t). However, the limiting distribution 

P(x)= lim p(x, t)=p*(x)+ p*(x) 
/ ~ 0 2 .  

is not, in the general case, an invariant density of an evolution operator U' 
defined by the relation 

p(x, t)= U'Po(x) 

where Po(x) is the initial probability density of the process x,. This can 
easily be shown for a linear model with additive noise] 6"71 since explicit 
solutions p(x, t) are known and limiting densities P(x) are presented in 
ref. 7. 
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